

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : SIGNALS AND SYSTEMS(18EC0403)

Course & Branch: B.Tech - EEE

Year & Sem: II B. Tech & II Sem **Regulation: R18**

UNIT -I

INTRODUCTION TO SIGNALS AND SYSTEMS

SHORT ANSWER QUESTIONS (2 MARKS)

1. Define a Signal. What is the relation between impulse, step, ramp and parabolic signals?

	[L1][CO1][2M]
2. How are the signals are classified?	[L1][CO1][2M]
3. Define Unit impulse and Unit step Signals.	[L1][CO1][2M]
4. Distinguish between periodic and non-periodic signals	[L4][CO1][2M]
5. Distinguish causal and anti-causal signals.	[L4][CO1][2M]
6. Define Linear and Non-Linear System	[L1][CO1][2M]
7. Define time-variant and time-invariant systems.	[L1][CO1][2M]
8. How are systems classified?	[L1][CO1][2M]
9. Define stable and unstable systems.	[L1][CO1][2M]
10. Define causal and non-causal systems.	[L1][CO1][2M]

LONG ANSWER OUESTIONS (10 MARKS)

1. Define various elementary signals in continuous time and discrete time and indi-	cate them graphically
	[L1][CO1][10M]
2. What are the basic operations on signals? Illustrate with an example.	[L1][CO1][10M]
3. Explain the classification of signals in both continuous time and discrete time w	ith suitable examples.
	[L2][CO1][10M]
4.(a) Find which of the signals are causal or non-causal.	[L1][CO1][05M]

4.(a) Find which of the signals are causal or non-causal. (i) $x(t) = e^{2t} u(t-1)$ (ii) $x(t) = 3 \operatorname{sinc} 2t$ (iii) x(n) = u(n+4) - u(n-2) (iv) x(t) = u(-n)

(b) Sketch the following signals [L1][CO1][05M]

(i) 2 u(t+2) - 2 u(t-3) (ii) u(t+4) u(-t+4) (iii) r(t)-r(t-1)-r(t-3)-r(t-4) (iv) $\pi(t-2)$

5. Find whether the following signals are periodic or not? If periodic determine the fundamental Period

(a) $\sin 12\pi t$ (b) $3\sin 200\pi t + 4\cos 100t$ (c) $\sin 10\pi t + \cos 20\pi t$ (e) $e^{j4\pi t}$

(d) $\sin (10t+1) - 2\cos (5t-2)$ [L1][CO1][10M] 6. (a) Find the even and odd components of the following signals [L1][CO1][05M]

(i) $x(t) = e^{j2t}$ (ii) $x(t) = (1+t^2+t^3)\cos^2 10t$ (iii) $x(n) = \{-3,1,2,-4,2\}$ (iv) $x(n) = \{5,4,3,2,1\}$

(b)Determine whether the following signals are energy signals or power signals. Calculate their energy or power? [L1][CO1][05M]

(i)x(t)= $8 \cos 4t \cos 6t$ (ii) $\sin^2 \omega_0 t$ (iii) $x(t)=e^{i[3t+(\pi/2)]}$ (iv) $x(n)=(1/2)^n u(n)$

7. Define a system. How are systems classified? Define each one of them. [L4][CO1][10M]

8. Check whether the following system is [L1][CO1][10M]

(a) Static or dynamic (b) linear or non-linear

non-causal (d) Time invariant or time variant (i)
$$d^3y(t)/dt^3+2d^2y(t)/dt^2+4$$
 dy(t)/dt+3y²(t)=x(t+1)

$$(ii)d^2y(t)/dt^2+2y(t) dy(t)/dt+3ty(t)=x(t)$$

9. Check whether the following system is

[L1][CO1][10M]

- (a) Static or dynamic
- (b) linear or non-linear
- (c) Causal or non- causal (i) $y(n) = \log_{10} |x(n)|$
- (d) Time invariant or time variant

$$(i)y(n) = \log_{10} |x(n)|$$

(ii)
$$y(n)=x^2(n)+1/x^2(n-1)$$

(iii)
$$y(t)=at^2 x(t)+bt x(t-4)$$

10.(a) Check whether the following systems are causal or not?

[L1][CO1][05M]

$$(i)y(t)=x^2(t)+x(t-4)$$

(ii)
$$y(t)=x(t/2)$$

$$(iii)y(n)=x(2n)$$

(i)
$$y(t)=x^2(t)+x(t-4)$$
 (ii) $y(t)=x(t/2)$ (iii) $y(n)=x(t/2)$ (iii) y

[L1][CO1][05M]

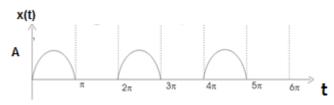
(i)
$$y(t) = (t+5) u(t)$$

(i)
$$y(t) = (t+5) u(t)$$
 (ii) $y(t) = (2+e^{-3t}) u(t)$

(iii)
$$h(n)=a^n$$
 for $0 < n < 11$

<u>UNIT –II</u>

FOURIER SERIES AND FOURIER TRANSFORM

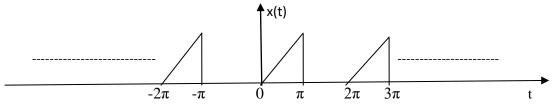

SHORT ANSWER QUESTIONS

1. What is Fourier Series.	[L1][CO2][2M]
2. Waht is the three important classes of Fourier series methods available.	[L1][CO2][2M]
3. What are the Dirichlet's conditions? State them.	[L1][CO2][2M]
4. What is the Relationship between exponential Fourier series and trigonometric Fourier	er series
coefficients?	[L1][CO2][2M]
5. How do you obtain Cosine Fourier series from exponential Fourier series?	[L1][CO2][2M]
6. Differentiate the Fourier series and Fourier transform.	[L1][CO2][2M]
7. What is Fourier transform?	[L1][CO2][2M]
8. Define Linearity Property of Fourier Transform	[L1][CO2][2M]
9. What are the Merits of Fourier Transform?	[L1][CO2][2M]
10. Define Fourier transform and Inverse Fourier transform of discrete time signal.	[L1][CO2][2M]

LONG ANSWER QUESTIONS

1. Find the Fourier series expansion of the half wave rectified sine wave shown in figure.

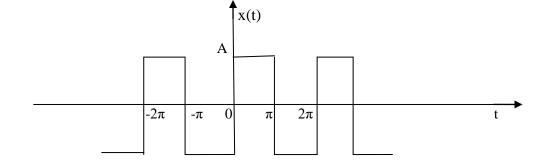
[L1][CO2][10M]



2. State and Prove any Five Properties of the Fourier Series.

[L3][CO2][10M]

3. Find the trigonometric Fourier series for the periodic signal x(t) shown in below


[L3][CO2][10M]

4. Explain about exponential Fourier series and derive the Fourier series coefficient

5. Find the trigonometric Fourier series for the periodic signal x(t) shown in below.

[L1][CO2][10M]

6. (a) Find the Fourier transform of the following	[L1][CO2][05M]
(i) $sgn(t)$ (ii) $sin \omega_0 t$ (iii) $cos \omega_0 t$ (iv) 1(Constant Amplitude)	
(b). Find the Fourier transform of the following	[L1][CO2][5M]
(i) impulse function (ii) $x(t)=e^{-at}u(t)$ (iii) $x(t)=e^{j\omega}o^{t}$	(iv) $x(t)=u(t)$
7. State and Prove the properties of Continuous time Fourier transform?	[L1][CO2][10M]
8. Find the Fourier transform of the following signals	[L1][CO2][10M]
(i) $x(t)=e^{-3t}u(t)$ (ii) $x(t)=te^{-at}u(t)$ (iii) $x(t)=e^{-t}\sin 5t u(t)$ (iv) $x(t)=e^{-t}\sin 5t u(t)$	t cos5t u(t)
9. Find the inverse Fourier transform of the following signals	[L1][CO2][10M]
(i) $X(w) = \frac{4(jw)+6}{(jw)+8}$ (ii) $X(W) = \frac{1+3(jw)}{(jw+3)2}$ (iii) $X(w) = e^{-2w}u(w)$	
10. (a) State and prove any three properties of the DTFT.	[L2][CO2][5M]
(b) Find the Fourier Transform of the Signal (i) Triangular Pulse (ii) $e^{-a t }$	[L1][CO2][5M]

<u>UNIT –III</u>

SIGNAL TRANSMISSION THROUGH LINEAR SYSTESMS

SHORT ANSWER QUESTIONS

1. What are the properties of LTI systems?	[L1][CO3][2M]
2. Define transfer function of a system?	[L1][CO3][2M]
3. Define impulse response of a system.	[L1][CO3][2M]
4. What is a filter? How are filters classified?	[L1][CO3][2M]
5. What is the Relation between unit step and impulse response?	[L1][CO3][2M]
6. Define sampling and sampling period?	[L1][CO3][2M]
7. State Sampling theorem	[L1][CO3][2M]
8. What is Nyquist rate and Nyquist interval?	[L1][CO3][2M]
9. What is anti-aliasing filter?	[L1][CO3][2M]
10. State Sampling theorem?	[L1][CO3][2M]
LONG ANSWER QUESTIONS	
DONG INTO WERE QUESTIONS	
1. (a) Explain the Filter characteristics of linear systems explain with neat diagrams	[L1][CO3[5M]
(b) Define the following (i)Impulse Response (ii)Step Response (iii) Response of the System	
	[I 1][CO2][5] [J]

LONG ANSWER QUESTIONS	
1. (a) Explain the Filter characteristics of linear systems explain with neat diagrams	[L1][CO3[5M]
(b) Define the following (i)Impulse Response (ii)Step Response (iii) Response of	the System
	[L1][CO3][5M]
2. (a) Derive the transfer function and impulse response of an LTI system.	[L1][CO3][5M]
(b) Define Linear time variant, Linear time-invariant, step response of the system.	[L2][CO3][5M]
3. Discuss the properties of linear time invariant systems.	[CO3][10M]
4. (a) Consider a stable LTI System characterized by the differential equation dy(t)/dt+	2y(t)=x(t), Find its
impulse response.	[L3][CO3][5M]
(b) Find the Nyquist Rate and Nyquist Interval of the following signals.	[L2][CO3][5M]
(i) $x(t)=1+\cos 2000 \pi t + \sin 4000 \pi t$ (ii) $x(t)=10 \sin 40\pi t \cos 300\pi t$	
5. (a) Let the system function of an LTI system be $1/(j\omega+2)$. What is the output of the	system for an
input $(0.8)^t$ u(t)?	[L3][CO3][5M]
(b) Consider a causal LTI system with frequency response $H(\omega)=1/4+j\omega$, for a input	
$x(t)$, the system is observed to produce the output $y(t)=e^{-2t}u(t)-e^{-4t}u(t)$. Find the input	ıt x(t).
	[L1][CO3][5M]
6. Consider a stable LTI system that is characterized by the differential equation	[L3][CO3][10M]
$d^2y(t)/dt^2+4dy(t)/dt+3y(t)=dx(t)/dt+2x(t)$ find the response for an input $x(t)=e^{-t}$	e^{-t} u(t).
7. Find the Nyquist rate and Nyquist interval for the following signals	[L1][CO3][10M]

- (ii) $10 \sin 40\pi t \cos 300\pi t$ (i) $x(t)=1+\cos 2000 \pi t + \sin 4000 \pi t$ (iii)x(t)=sinc $(100 \pi t) + 3 sinc^2 (60 \pi t)$ (iv) $x(t) = 2 \text{ sinc } (100 \pi t)$
- 8. State and prove the sampling theorem for the band-limited signals with the help of graphical representation. [L1][CO3][10M]
- 9. (a) Discuss about Effects of the under sampling. [L4][CO3][05M]
- (b) A system produces an output of $y(t) = e^{-3t} u(t)$ for an input of $x(t) = e^{-5t} u(t)$. Determine the impulse response and frequency response of the system. [L3][CO3][05M]
- 10. signal $x(t) = 2 \cos 400\pi t + 6 \cos 640\pi t$ is ideally sampled at fs= 500 Hz. If the sampled signal is passed through an ideal LPF with a cut off frequency of 400Hz, what frequency components will appear in the output? Find the output signal. [L3][CO3][10M]

UNIT -IV

CONVOLUTION AND CORRELATION OF SIGNALS

SHORT ANSWER QUESTIONS

1. What is convolution? State the shift property of convolution.	[L1][CO4][2M]
2. State Time convolution and Frequency convolution theorem	[L1][CO4][2M]
3. What is correlation and types of correlation?	[L1][CO4][2M]
4. What are the properties of cross correlation for energy signals?	[L1][CO4][2M]
5. What are the properties of auto correlation for power signals?	[L1][CO4][2M]
6. What is the relation between convolution and correlation?	[L1][CO4][2M]
7. What are the Properties of ESD?	[L1][CO4][2M]
8. Differentiate ESD and PSD?	[L1][CO4][2M]
9. State Parseval's energy theorem?	[L1][CO4][2M]
10. State Parseval's power theorem?	[L1][CO4][2M]

LONG ANSWER QUESTIONS

1. (a) Write the properties of convolution. (b) Find the convolution of the following signal $x_1(t) = e^{-2t} u(t)$, $x_2(t) = e^{-4t} u(t)$	[L1][CO4][05M] [L1]CO4][05M]
2. (a) State and prove the time convolution theorem with Fourier transforms.	[L1][CO4][05M]
(b) State and prove the frequency convolution theorem with Fourier transforms.	[L1][CO4][05M]
3. (a) Derive the relation between convolution and correlation.	[L2][CO4][05M]
(b). Write the properties of cross correlation for energy signals	[L1][CO4][05M]
4. (a) State and prove the Parseval's theorem for energy signals.	[L3][CO5][05M]
(b) State and prove the Parseval's theorem for power signals.	[L3][CO4][05M]
5. (a) Derive and Define the properties of Energy Spectral Density.	[L1][CO4][05M]
(b) Derive and Define the properties of Power Spectral Density	[L1][CO4][05M]
6. (a) Show that R(r) and ESD form Fourier transform pair.	[L1][CO4][05M]
(b) Show that R(r) and PSD form Fourier transform pair.	[L1][CO4][05M]
7. (a) Verify Parseval's theorem for the energy signal $x(t)=e^{-4t}u(t)$.	[L2][CO4][05M]
(b) Determine the autocorrelation function and energy spectral density of $x(t)=e^{-a}$	t u(t).
	[L3][CO4][05M]

8. (a) Find the autocorrelation of the signal $x(t)=a \sin(\omega_0 t + \theta)$.

[L3][CO4][05M]

(b) Distinguish the ESD and PSD.

[L4][CO4][05M]

9. (a) Explain the detection of periodic signals in the presence of noise by auto correlation.

[L1][CO4][05M]

(b) Explain the detection of periodic signals in the presence of noise by cross correlation

[L1][CO4][05M]

Explain the extraction of noise by Filtering.

10. Explain the extraction of a signal from noise by filtering.

[L1][CO4][10M]

[L1][CO5][05M]

<u>UNIT -V</u>

LAPLACE TRANSFORMS AND Z-TRANSFORMS

SHORT ANSWER QUESTIONS

1. What is the Region of Convergence (ROC)?	[L1][CO5][2M]
2. What is the relation between Laplace transform and Fourier transform?	[L1][CO5][2M]
3. State initial value theorem and final value theorem of Laplace transform.	[L1][CO5][2M]
4. What are the properties of ROC?	[L1][CO5][2M]
5. What is the Laplace Transform of Parabolic Function.?	[L1][CO5][2M]
6. What is the relation between Discrete-time Fourier transform and Z-transform?	[L1][CO5][2M]
7. What is the Z-transform of unit step signal?	[L1][CO5][2M]
8. Find Z-transform and ROC of $x(n)=(1/2)^n u(n-2)$	[L1][CO5][2M]
9. State the Convolution Property of Z-transform	[L1][CO5][2M]
10. Discuss the comparison of Laplace and Z-Transform.	[L1][CO5][2M]

LONG ANSWER QUESTIONS

Edito movem Questions	
1. State and prove the any five Properties Laplace Transform 2. (a) Find the Laplace transform of the signal $x(t) = e^{-at} u(t) - e^{-bt} u(-t)$ and also find its	[L3][CO5][10M] s ROC
	[L1][CO5][05M]
(b) Find the Laplace transforms and region for the following signals (i)x(t)= e^{-5t} u(t-1) (ii)x(t)= e^{2t} sin2t for t \leq 0 (iii) x(t)= t $e^{-2 t }$	[L1][CO5][05M]
3. Find the Laplace transform of the following signals using properties of Laplace transform	nsform
	[L1][CO5][10M]
(i) $x(t)=t e^{-t} u(t)$ (ii) $x(t)=t e^{-2t} \sin 2t u(t)$ (iii) $x(t)=\sin at/t$ (iv) $x(t)=1-e^{t}/t$	
4. Find the inverse Laplace transform of the following	[L1][CO5] [10M]
(a) $X(s) = 1/s(s+1)(s+2)(s+3)$ (b) $X(s) = (3s^2+22s+27)/(s^2+3s+2)(s^2+2s+5)$	
(c) $X(s)=s/(s+3)(s^2+4s+5)$	
5. (a) Find the convolution of the sequences:	
(i) (ii)	[L1][CO5][05M]
(b) Discuss about the Properties of the ROC of Laplace transform	
(b) Discuss about the Froperties of the ROC of Laplace transform	[] 21[CO51[O5] []
	[L3][CO5][05M]
6. (a) State and prove time differentiation and time integration property of Laplace tra	
	[L1][CO5][05M]
(b). Find the Laplace transform for any 5 standard signals	[L1][CO5][05M]
7. Find the inverse z-transform of:	[L1][CO5][05M]
$X(z)=3z^{-1}/(1-z^{-1})(1-2z^{-1})$	
(a) If ROC; $ z > 2$ (b) If ROC; $ z < 1$ (c) If ROC; $ x < 2$	
8. (a) Find the inverse Z-transform of $X(z)$ given $X(z) = 1/(1-az^{-1})$, ROC; $z > a $	[L1][CO5][05M]
(b) Find the convolution of the sequences:	[L1][CO5] [05M]
$x_1(n)=(1/2)^n$ u(n) and $(1/3)^{n-2}$ u(n)	
9. (a) State and prove initial and final value theorems of Z-transform?	[L3][CO5][05M]
(b) Using the Properties of Z-transform. Find the Z-transform of following signals	

Signals and Systems Page 7

(i) x(n)=u(-n) (ii) $x(n)=2^n u(n-2)$ (iii) $2(3)^n u(-n)$

10. (a) Prove that the final value of x(n) for $X(z) = \frac{z^2}{(z-1)(z-0.2)}$ is 1.25 and its final value is unity? [L3][CO5] [05M]

(b). Find the inverse Z-transform of $X(z) = z^{-1}/(3-4z^{-1}+z^{-2})$, ROC: |z| > 1

[L1][CO5][05M]

Prepared by: C. PRASAD